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ABSTRACT

The software quality and reliability have been proved to be impor-

tant during the program development. There are many existing

studies trying to help improve it on bug detection and automated

program repair processes. However, each of them has its own limi-

tation and the overall performance still have some improvement

space. In this paper, we proposed a deep learning framework to

improve the software quality and reliability on these two detect-

fix processes. We used advanced code modeling and AI models to

have some improvements on the state-of-the-art approaches. The

evaluation results show that our approach can have a relative im-

provement up to 206% in terms of F-1 score when comparing with

baselines on bug detection and can have a relative improvement

up to 19.8 times on the correct bug-fixing amount when compar-

ing with baselines on automated program repair. These results can

prove that our framework can have an outstanding performance

on improving software quality and reliability in bug detection and

automated program repair processes.
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1 INTRODUCTION

Improving software quality and reliability is a never-ending demand

[3, 4, 6, 12, 16, 22]. One study from the USDepartment of Commerce’

National Institute of Standards and Technology (NIST) concluded

that software bugs cause serious loss, about $59 billion or about

0.6 percent of the GDP, each year. Various approaches can help

improve the software quality and reliability [5, 8, 9, 14, 21, 24], such

as bug detection and automated program repair (APR).

Existing Approaches. In this research, we focus on the detec-

tion and auto-fixing of bugs. Thus, we briefly introduce the related

studies in bug detection and automated program repair problems

with their main limitations.
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There have been three different types of bug detection approaches

have been proposed in the literature, including rule based [13], min-

ing based [5, 9, 14, 21], and machine learning based [28–30]. All of

these existing approaches have some limitations, rule based ones

need manually defined rules for new types of bugs, and the mining

and machine learning based ones typically have high false-positive

rates. Through our previous study [19], we observed that the ex-

isting approaches, especially machine learning based ones, do not

work well on detecting cross-method bugs and their code modeling

is not effective and accurate.

In the APR research, there are two main streams of approaches,

including pattern based [15, 17, 20, 23] and learning based ap-

proaches [10, 11, 25, 31]. The pattern based approaches need gen-

erated rules. However, the learning based approaches have a hard

time learning code changes and the context of the surrounding

code which may lead to lower accuracy and wrong fixing positions.

Through our previous study [18], we observed that the existing

state-of-the-art APR approaches do not work well on separating

and modeling the buggy code and its surround code context.

Our Work. In this research, we aim to improve the existing

state-of-the-art bug detection and auto-fixing (namely detect-fix)

approaches via accurate, effective, and specialized code represen-

tation learning. Our code representation learning relies on the fol-

lowing pillars: code representations (i.e., data structures) obtained

from advanced program analysis and deep neural network models.

Currently, we focus on two detect-fix processes: Bug Detection

(BD) and Automated Program Repair (APR). To overcome the limi-

tations of the state-of-the-art BD and APR approaches, we propose

to improve DB and APR as follows:

Bug Detection. To identify cross-method bugs and have effective

code modeling, in our previous study [19], we first extract paths

from Abstract Syntax Trees of code methods for local code con-

texts, then use program dependency and data flow graphs to model

relations among methods. We come up with a new neural network

based code representation learning model specialized for bug de-

tection by adding a weight to buggy code, considering method

code relationship with graphs, and using AST paths to represent

the code methods. Our empirical results on a corpus of 5 million

Java methods show that our bug detection specialized detector can

improve the state-of-the-art baselines by up to 206%.

APR. To separate and model bug fixes and their surrounding

unchanged code as contexts, in our previous study [18], we pro-

pose a two-layer tree-based model, namely DLFix to learn code

transformations from buggy to healthy code.

Therefore, in our two-layer model, the first layer is used to learn

the surrounding code context and the other one is used to learn the

buggy code fixing. Our code representation learning is based on
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these two layers to help improve the APR performance. Our empir-

ical results show that our DLFix can outperform all studied Deep

Learning based APR approaches, also generate comparable results

compared with the most state-of-the-art pattern-based approaches.

2 OUR APPROACH

Bug Detection. In our approach [19], we use deep learning models

with graphs to catch code context information and code relationship

information. Then we use a CNN layer with softmax as a classifier

to do the bug detection. Specifically, our approach works in three

phases. We first learn local context by extracting the paths along

with the AST’s nodes, converting them into vectors using a Gated

Recurrent Unit (GRU) layer [7] and an attention Convolutional

layer [32], combining all vectors using Multi-Head Attention [26] to

obtain the path local context representation. Second, to generate the

global context modeling relations among paths from methods, we

build the program dependency and data flow graphs and extract the

subgraphs relevant to a method. After having both local and global

context representations for each path, we can get the representation

for each method by directly linking all merged path vectors.

The uniqueness of our approach: (1) using program depen-

dency and data flow graphs to catch code relationship among meth-

ods; and (2) adding weights to buggy paths when doing the training

for specializing our code representation learning for bug detection.

Automated Program Repair. In our approach [18], we propose a

two-layer tree-based deep learning model, namely DLFix, to learn

code transformations by using one layer to learn the surrounding

code and the other one layer to learn the bug-fixing changes. We

separate the learning of the context of surrounding code of bug fixes

from the learning of the code transformations for bug fixes with two

layers in our model. The changed (buggy) sub-tree in the AST of a

buggy method is identified and replaced with a summarized node

using a deep-learning based code summarization technique [27].

The un-changed AST sub-trees together with the summarized node

constitute the context and are learned with a RNN model at the

context learning layer. Following existing state-of-the-art APR tools,

DLFix is designed for one statement auto-fixing.

The uniqueness of our approach: A novel two-layer tree-

based code transformation learning model.

3 EVALUATION

Bug Detection: Dataset and Metrics.We evaluated our approach

and the baselines on eight well-known and large open-source Java

projects with 92 versions +4.9 million Java methods. We mainly use

F-score as the evaluation metric.

Results. Our key empirical results show that our approach can

have a relative improvement up to 160% in terms of F-score when

comparing with other baselines in the cross-project settings in

Fig. 1. Due to the page limit, more results can be found in [19].

Automated Program Repair: Dataset and Metrics. We did

the experiments on well-known dataset Defects4J [1]. We use the

number of auto-fixed bugs as the evaluation metric.

Results. Fig. 2 shows that DLFix can auto-fix 30 bugs and its

results are comparable and complementary to the top APR tools

(Simfix, Hercules, and TBar) on one statement auto-fixing with

the Ochiai [2] as the fault localization. Also, DLFix outperformed

Figure 1: Comparison with the Bug Detection Baselines in

Cross-Project Setting

all of the existing Deep Learning based APR tools. DLFix can fix 2.5

times more bugs than the best performing Deep Learning baseline.

Due to the page limit, more results can be found in [18].

Figure 2: Comparison with the APR Baselines on Defect4J

4 ADVANCING REPRESENTATION

LEARNING TO IMPROVE BUG DETECTION

AND FIXING

We plan to improve and advance code modeling in the following

detect-fix bug process:

• Bug Detection: Using code representation learning models

to explain bug types when doing bug detection.

• Fault Localization:Applying deep learningmodels on code

coverage information to improve the code representation

learning to locate bugs.

• Automated Program Repair: Improving the code repre-

sentation learning model to repair multi line bugs.

• Concolic Testing: Applying code representation learning

models to generate test cases for execution paths.

5 CONCLUSION

In this research, we proposed two novel code modeling approaches

to improve two processes: bug detection and automated program re-

pair. The key ideas that enable our work: using code representation

learning models can help improve the state-of-the-art approaches

on bug detection and APR. Our evaluation results on published

papers [18, 19] could prove our model and key ideas can work well.
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