
Improving Bug Detection and Fixing via Code Representation
Learning

Yi Li
New Jersey Institute of Technology, USA

yl622@njit.edu

ABSTRACT

The software quality and reliability have been proved to be impor-

tant during the program development. There are many existing

studies trying to help improve it on bug detection and automated

program repair processes. However, each of them has its own limi-

tation and the overall performance still have some improvement

space. In this paper, we proposed a deep learning framework to

improve the software quality and reliability on these two detect-

fix processes. We used advanced code modeling and AI models to

have some improvements on the state-of-the-art approaches. The

evaluation results show that our approach can have a relative im-

provement up to 206% in terms of F-1 score when comparing with

baselines on bug detection and can have a relative improvement

up to 19.8 times on the correct bug-fixing amount when compar-

ing with baselines on automated program repair. These results can

prove that our framework can have an outstanding performance

on improving software quality and reliability in bug detection and

automated program repair processes.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

ACM Reference Format:

Yi Li. 2020. Improving Bug Detection and Fixing via Code Representation

Learning. In 42nd International Conference on Software Engineering Compan-

ion (ICSE ’20 Companion), May 23–29, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/3377812.3382172

1 INTRODUCTION

Improving software quality and reliability is a never-ending demand

[3, 4, 6, 12, 16, 22]. One study from the USDepartment of Commerce’

National Institute of Standards and Technology (NIST) concluded

that software bugs cause serious loss, about $59 billion or about

0.6 percent of the GDP, each year. Various approaches can help

improve the software quality and reliability [5, 8, 9, 14, 21, 24], such

as bug detection and automated program repair (APR).

Existing Approaches. In this research, we focus on the detec-

tion and auto-fixing of bugs. Thus, we briefly introduce the related

studies in bug detection and automated program repair problems

with their main limitations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7122-3/20/05. . . $15.00
https://doi.org/10.1145/3377812.3382172

There have been three different types of bug detection approaches

have been proposed in the literature, including rule based [13], min-

ing based [5, 9, 14, 21], and machine learning based [28–30]. All of

these existing approaches have some limitations, rule based ones

need manually defined rules for new types of bugs, and the mining

and machine learning based ones typically have high false-positive

rates. Through our previous study [19], we observed that the ex-

isting approaches, especially machine learning based ones, do not

work well on detecting cross-method bugs and their code modeling

is not effective and accurate.

In the APR research, there are two main streams of approaches,

including pattern based [15, 17, 20, 23] and learning based ap-

proaches [10, 11, 25, 31]. The pattern based approaches need gen-

erated rules. However, the learning based approaches have a hard

time learning code changes and the context of the surrounding

code which may lead to lower accuracy and wrong fixing positions.

Through our previous study [18], we observed that the existing

state-of-the-art APR approaches do not work well on separating

and modeling the buggy code and its surround code context.

Our Work. In this research, we aim to improve the existing

state-of-the-art bug detection and auto-fixing (namely detect-fix)

approaches via accurate, effective, and specialized code represen-

tation learning. Our code representation learning relies on the fol-

lowing pillars: code representations (i.e., data structures) obtained

from advanced program analysis and deep neural network models.

Currently, we focus on two detect-fix processes: Bug Detection

(BD) and Automated Program Repair (APR). To overcome the limi-

tations of the state-of-the-art BD and APR approaches, we propose

to improve DB and APR as follows:

Bug Detection. To identify cross-method bugs and have effective

code modeling, in our previous study [19], we first extract paths

from Abstract Syntax Trees of code methods for local code con-

texts, then use program dependency and data flow graphs to model

relations among methods. We come up with a new neural network

based code representation learning model specialized for bug de-

tection by adding a weight to buggy code, considering method

code relationship with graphs, and using AST paths to represent

the code methods. Our empirical results on a corpus of 5 million

Java methods show that our bug detection specialized detector can

improve the state-of-the-art baselines by up to 206%.

APR. To separate and model bug fixes and their surrounding

unchanged code as contexts, in our previous study [18], we pro-

pose a two-layer tree-based model, namely DLFix to learn code

transformations from buggy to healthy code.

Therefore, in our two-layer model, the first layer is used to learn

the surrounding code context and the other one is used to learn the

buggy code fixing. Our code representation learning is based on

137

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

these two layers to help improve the APR performance. Our empir-

ical results show that our DLFix can outperform all studied Deep

Learning based APR approaches, also generate comparable results

compared with the most state-of-the-art pattern-based approaches.

2 OUR APPROACH

Bug Detection. In our approach [19], we use deep learning models

with graphs to catch code context information and code relationship

information. Then we use a CNN layer with softmax as a classifier

to do the bug detection. Specifically, our approach works in three

phases. We first learn local context by extracting the paths along

with the AST’s nodes, converting them into vectors using a Gated

Recurrent Unit (GRU) layer [7] and an attention Convolutional

layer [32], combining all vectors using Multi-Head Attention [26] to

obtain the path local context representation. Second, to generate the

global context modeling relations among paths from methods, we

build the program dependency and data flow graphs and extract the

subgraphs relevant to a method. After having both local and global

context representations for each path, we can get the representation

for each method by directly linking all merged path vectors.

The uniqueness of our approach: (1) using program depen-

dency and data flow graphs to catch code relationship among meth-

ods; and (2) adding weights to buggy paths when doing the training

for specializing our code representation learning for bug detection.

Automated Program Repair. In our approach [18], we propose a

two-layer tree-based deep learning model, namely DLFix, to learn

code transformations by using one layer to learn the surrounding

code and the other one layer to learn the bug-fixing changes. We

separate the learning of the context of surrounding code of bug fixes

from the learning of the code transformations for bug fixes with two

layers in our model. The changed (buggy) sub-tree in the AST of a

buggy method is identified and replaced with a summarized node

using a deep-learning based code summarization technique [27].

The un-changed AST sub-trees together with the summarized node

constitute the context and are learned with a RNN model at the

context learning layer. Following existing state-of-the-art APR tools,

DLFix is designed for one statement auto-fixing.

The uniqueness of our approach: A novel two-layer tree-

based code transformation learning model.

3 EVALUATION

Bug Detection: Dataset and Metrics.We evaluated our approach

and the baselines on eight well-known and large open-source Java

projects with 92 versions +4.9 million Java methods. We mainly use

F-score as the evaluation metric.

Results. Our key empirical results show that our approach can

have a relative improvement up to 160% in terms of F-score when

comparing with other baselines in the cross-project settings in

Fig. 1. Due to the page limit, more results can be found in [19].

Automated Program Repair: Dataset and Metrics. We did

the experiments on well-known dataset Defects4J [1]. We use the

number of auto-fixed bugs as the evaluation metric.

Results. Fig. 2 shows that DLFix can auto-fix 30 bugs and its

results are comparable and complementary to the top APR tools

(Simfix, Hercules, and TBar) on one statement auto-fixing with

the Ochiai [2] as the fault localization. Also, DLFix outperformed

Figure 1: Comparison with the Bug Detection Baselines in

Cross-Project Setting

all of the existing Deep Learning based APR tools. DLFix can fix 2.5

times more bugs than the best performing Deep Learning baseline.

Due to the page limit, more results can be found in [18].

Figure 2: Comparison with the APR Baselines on Defect4J

4 ADVANCING REPRESENTATION

LEARNING TO IMPROVE BUG DETECTION

AND FIXING

We plan to improve and advance code modeling in the following

detect-fix bug process:

• Bug Detection: Using code representation learning models

to explain bug types when doing bug detection.

• Fault Localization:Applying deep learningmodels on code

coverage information to improve the code representation

learning to locate bugs.

• Automated Program Repair: Improving the code repre-

sentation learning model to repair multi line bugs.

• Concolic Testing: Applying code representation learning

models to generate test cases for execution paths.

5 CONCLUSION

In this research, we proposed two novel code modeling approaches

to improve two processes: bug detection and automated program re-

pair. The key ideas that enable our work: using code representation

learning models can help improve the state-of-the-art approaches

on bug detection and APR. Our evaluation results on published

papers [18, 19] could prove our model and key ideas can work well.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Shaohua Wang from Informat-

ics, New Jersey Institute of Technology, and Dr. Tien N. Nguyen

from Computer Science, The University of Texas at Dallas who

gave valuable suggestions to improve the quality of the research

and language editing.

138

REFERENCES
[1] 2019. The Defects4J Data Set. https://github.com/rjust/defects4j
[2] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An Evaluation of

Similarity Coefficients for Software Fault Localization. In Proceeding of the 12th
Pacific Rim International Symposium on Dependable Computing. 39–46. https:
//doi.org/10.1109/PRDC.2006.18

[3] Matthew Amodio, Swarat Chaudhuri, and Thomas W. Reps. 2017. Neural
Attribute Machines for Program Generation. CoRR abs/1705.09231 (2017).
arXiv:1705.09231

[4] Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Er-
rors in Programming Assignments using Recurrent Neural Networks. CoRR
abs/1603.06129 (2016). arXiv:1603.06129

[5] Pan Bian, Bin Liang, Wenchang Shi, Jianjun Huang, and Yan Cai. 2018. NAR-
miner: Discovering Negative Association Rules from Code for Bug Detection.
In Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2018). ACM, New York, NY, USA, 411–422. https://doi.org/10.1145/3236024.
3236032

[6] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: Probabilistic
Model for Code. In Proceedings of the 33rd International Conference on Machine
Learning (Proceedings of Machine Learning Research), Maria Florina Balcan and
Kilian Q.Weinberger (Eds.), Vol. 48. PMLR, NewYork, New York, USA, 2933–2942.

[7] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014).
arXiv:1406.1078

[8] Brian Cole, Daniel Hakim, David Hovemeyer, Reuven Lazarus, William Pugh,
and Kristin Stephens. 2006. Improving Your Software Using Static Analysis to
Find Bugs. In Proceeding of the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA ’06). ACM, New
York, NY, USA, 673–674. https://doi.org/10.1145/1176617.1176667

[9] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. (2001), 57–72. https://doi.org/10.1145/502034.502041

[10] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. https://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14603

[11] Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to generate cor-
rective patches using neural machine translation. arXiv preprint arXiv:1812.07170
(2018).

[12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA,
837–847. http://dl.acm.org/citation.cfm?id=2337223.2337322

[13] David Hovemeyer and William Pugh. 2007. Finding More Null Pointer Bugs,
but Not Too Many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE ’07). ACM, New
York, NY, USA, 9–14. https://doi.org/10.1145/1251535.1251537

[14] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-World Performance Bugs. (2012), 77–88.
https://doi.org/10.1145/2254064.2254075

[15] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceeding of the 35th
International Conference on Software Engineering (ICSE). 802–811. https://doi.
org/10.1109/ICSE.2013.6606626

[16] Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
2018. Deepcode: Feedback Codes via Deep Learning. CoRR abs/1807.00801 (2018).
arXiv:1807.00801

[17] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions on

Software Engineering 38, 1 (Jan 2012), 54–72. https://doi.org/10.1109/TSE.2011.104
[18] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. DLFix: Context-based Code

Transformation Learning for Automated Program Repair. ICSE (2020).
[19] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug

detection via context-based code representation learning and attention-based
neural networks. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 162.

[20] Kui Liu, Anil Koyuncu, DongsunKim, and Tegawendé F Bissyandé. 2019. AVATAR:
Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations. In Proceed-
ing of the 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). 1–12. https://doi.org/10.1109/SANER.2019.8667970

[21] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static Detection of Asymptotic
Performance Bugs in Collection Traversals. (2015), 369–378. https://doi.org/10.
1145/2737924.2737966

[22] Jibesh Patra andMichael Pradel. 2016. Learning to Fuzz: Application-Independent
Fuzz Testing with Probabilistic, Generative Models of Input Data.

[23] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
Strength of Random Search on Automated Program Repair. In Proceedings of the
36th International Conference on Software Engineering (ICSE 2014). Association for
Computing Machinery, New York, NY, USA, 254–265. https://doi.org/10.1145/
2568225.2568254

[24] John Toman and Dan Grossman. 2017. Taming the Static Analysis Beast. In 2nd
Summit on Advances in Programming Languages (SNAPL 2017) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs)), Benjamin S. Lerner, Rastislav Bodík,
and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 18:1–18:14. https://doi.org/10.4230/LIPIcs.
SNAPL.2017.18

[25] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. An Empirical Investigation into Learning
Bug-Fixing Patches in the Wild via Neural Machine Translation. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE 2018). Association for Computing Machinery, New York, NY, USA, 832–837.
https://doi.org/10.1145/3238147.3240732

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762

[27] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving Automatic Source Code Summarization via Deep
Reinforcement Learning. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering (ASE 2018). ACM, 397–407.

[28] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
BugDetectionwith N-gram LanguageModels. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). ACM,
New York, NY, USA, 708–719. https://doi.org/10.1145/2970276.2970341

[29] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically Learning Semantic
Features for Defect Prediction. In Proceedings of the 38th International Conference
on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 297–308. https:
//doi.org/10.1145/2884781.2884804

[30] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
Object Usage Anomalies. In Proceedings of the the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York, NY, USA,
35–44. https://doi.org/10.1145/1287624.1287632

[31] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys
Poshyvanyk. 2019. Sorting and transforming program repair ingredients via deep
learning code similarities. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 479–490.

[32] Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. 2015. ABCNN:
Attention-Based Convolutional Neural Network for Modeling Sentence Pairs.
CoRR abs/1512.05193 (2015). arXiv:1512.05193

139

